

Copyright © 2008 Danish Technological Institute Page 1 of 8

Using MatLab to aid the implementation of a fast

RSA processor on a Xilinx FPGA

Carsten Siggaard

(Senior Consultant, Danish Technological Institute, 8000 Aarhus Denmark)

Abstract
In cryptographic applications multiplications modulo a large number is the core of algorithms such as

RSA and El-Gamal. These operations are expensive, making even a Pentium IV unable to perform more

than a few thousands cryptographic operations per second. Many algorithmic optimizations have been

proposed e.g. by Montgomery and Barrett however the operations are still very expensive. The expensive

operations cause the need for large server farms just to be able to handle the key exchange in large web

applications. ASIC implementations exists which are very efficient, but ASIC’s suffer from the lack of

flexibility, which is the hallmark of many FPGA’s. We present a method to map the multiplications into a

Xilinx FPGA, creating a huge speedup. The advantage is that it is possible to upgrade the FPGA e.g. if

key sizes have to be increased or the algorithm must be improved. The modelling is done by means of

MatLab and Simulink, where the code generation is done by the Simulink HDLcoder.

Keywords:
FPGA, Xilinx, Cryptology, Simulink, HDLcoder

INTRODUCTION

Objectives

In many data communication applications

asymmetric cryptographic systems are in use. One

of the most known is the RSA algorithm. Although

it is very simple to describe, the RSA system is very

demanding with respect to computational resources.

The amount of traffic on the web sites requiring

authentication and key exchange causes heavy load

on the ISP’s computer resources. The purpose of

this demo-project done at the Danish Technological

Institute was to demonstrate that a high speed RSA

off-load engine is simple and fast to implement

using FPGA’s.

Some of the arguments for using FPGA’s are

outlined below, and they do cause a speed-up for

many applications, especially Digital Signal

Processing applications and Cryptographic

applications:

• FPGA’s are well suited for

implementing cryptographic algorithms.

There are several approaches taking

advantage of the blocks of the FPGA’s -

the most important are the DSP blocks

which are implemented in both Xilinx

and Altera FPGA’s, but also the RAM

blocks which have a size that matches

the intermediate results and the keys.

• FPGA’s have the reputation that they

operate fast. If you compare the clock

frequencies of FPGA’s with processors,

the FPGA seem to be slow, but where

common off-the shelf processors can do

a few operations per clock cycle FPGA’s

can do several thousand operations per

clock cycle - e.g. the soon to come

Copyright © 2008 Danish Technological Institute Page 2 of 8

Altera Stratix-4 II EP4SE680 can do 1360

18x18 bit signed multiplications per clock

cycle.

• FPGA’s are highly configurable - a SRAM

based FPGA can be reprogrammed an

unlimited number of times, making it

possible to change the operation during the

life time of the hardware used.

One of the disadvantages is that developing

applications for FPGA’s is a time consuming and

cumbersome task; the programmer must have a

thorough understanding of the programming

language (VHDL or Verilog) and also of the

underlying hardware. Therefore moving to a higher

level of abstraction and using a tool supporting this

higher level of abstraction significantly moves the

effort from detailed implementation to algorithm

refinement and verification.

The entry barriers such as the required knowledge

of the hardware are reduced, because the developers

do not need to implement one single line of VHDL.

The result of this is that FPGA development is

turned into model-based development instead of

pure VHDL implementation.

RSA Cryptosystem

Until 1997, the history of RSA was that Ron Rivest,

Adi Shamir and Leonard Adlemann first described

the RSA algorithm in 1977, and MIT was granted a

US patent in 1983. The patent expired in September

2000. However in 1997 Clifford Cocks work by the

UK intelligence agency GCHQ was made public.

Clifford Cocks work dates back to 1973 and

essentially describes the RSA Cryptosystem. The

algorithm did not come into use at that time [Singh

2000].

The following definition is based on [Stinson 2006].

Definition 1: RSA Cryptosystem

Let n = pq, where p and q are primes.

Let P = C = Zn and define

K = {n, p, q, a, b} : ab ≡ 1 mod Φ (n)

where Φ(n) = (p − 1)(q − 1), because p and q are

both primes. For K = (n, p, q, a, b), define:

eK(x) = x
b
 mod n and dK(y) = y

a
 (mod n)

(x, y ∈ Zn).

The values n and b comprise the public key, and

the values p, q and a forms the private key.

Note that RSA is not a secure system, but the

level of security is defined by the use (or the

misuse) of RSA. The RSA is one of the most

famous cryptosystems and because RSA is a

very resource-demanding cryptosystem, RSA is

used as a sample application for calculations

modulo some large n, however there are other

cryptographic applications in which

multiplications modulo some large n can be

used, e.g. Diffie-Hellman, El-Gamal, not to

mention elliptic curve algorithms [Stinson 2006].

The problem with these cryptosystems is that the

calculation of a product modulo n (and therefore

also exponentiation) is time-consuming. Either

division or a series of subtractions must be used,

but most algorithms for division can only

calculate one (or two) bit(s) per cycle, hence a

complete multiplication of a*b mod n, when n is

a 1024-bit modulo might at least take 32+1024

cycles, where the 32 cycles are used to calculate

the product and the 1024 cycles are for the trial

division. It is assumed that 2 bits can be

calculated per cycle.

So if there is a way to calculate a number

modulo n which is faster than the computation

time mentioned above, cryptography using RSA

becomes faster. This also becomes important as

the required key sizes increase due to the

development in both the computational power

and the skills of the cryptanalysts.

A scheme proposed by Peter Montgomery

[Montgomery P. 1985] has been accepted as one

Copyright © 2008 Danish Technological Institute Page 3 of 8

of the best algorithms to calculate integers modulo a

large number; the algorithm will be described in the

next section.

Montgomery Multiplication

The Montgomery Multiplication is based upon the

fact that for {x, y < m, m odd integer | ∃z < m} such

that:

z 2n
 (mod m) = x y (mod m) (1)

Because m is odd, equation 1 can be written as:

2
−n

z 2
n
= 2

−n
 xy (mod m)

Which can be rearrange such that

z = xy 2
−n

 (mod m) = xy r
−1

 (mod m), r = 2
n

(2)

The latter part of formula (2) is the Montgomery

product. An algorithm calculating the Montgomery

product is outlined in algorithm 1, the proof for the

correctness of this algorithm can be found in

[Montgomery P. 1985] and [Jensen T.D, 2006] .

The Montgomery product does not seem to be

usable by itself, but if you instead of calculating

MontProd(a, b) calculate:MontProd(a·r, b·r) then the

result would be:

MontProd(a·r, b·r) = a·r ·b·r·r
−1

 mod n

 = a·b·r mod n

This property of the Montgomery product can be

used when calculating several multiplications in

series as described in Montgomery’s Paper

[Montgomery P. 1985].

One example is exponentiation using a square

and multiply approach as described in [Jensen

T.D. et.al., 2006] and [Menezes et. al., 1997] .

This approach forms the basis of the

implementation described in this paper.

The correctness of the square and multiply can

be seen by a sample using 5 as the exponent:

step Results (all modulo n)

initial x = x·r
2
·r

−1
 = x·r

initial(second) A = 1·r
2
· r−1 = r

1 A = (A·A·r
−1

) ·(˜x) ·r−1

 = r· r·r
−1

· x· r· r−1

 = x·r

2 A = (A·A) · r
−1

 = (x · r) · (x · r) · r
−1

 = x
2
r

3 A = (A·A·r
−1

)·(˜x) ·r
−1

 = x
2
r· x

2
r·r

−1
·x·r·r

−1

 = x
5
r

final A = x
5
·r·r

−1
 = x

5

Note that the second product calculated in the

initial step is only necessary each time a new

modulo is generated, for systems with a fixed

Copyright © 2008 Danish Technological Institute Page 4 of 8

modulo this step can be omitted, or if the system has

storage for the modulo e.g. in local RAM.

RELATED WORK

Other implementations

Two major algorithms for reduction modulo n are

the Barrett algorithm and the Montgomery

algorithm. The reason for choosing Montgomery

instead of Barrett (or a classical trial division) is that

Montgomery reduction scales very well for

increasing operand sizes. This means that the

computational complexity increases much more

slowly for the Montgomery reduction than for both

the classical and the Barrett Reduction. Furthermore

exponentiation using the Montgomery product have

been verified to be superior to both classical and

Barrett [Bosselears 1993].

Other implementations using FPGA’s have been

proposed, for example [Fry and Langhammer 2005],

this implementation does not take advantage of the

built-in multipliers on most modern FPGA’s,

resulting in a low speed (12 operations per second

for a 1024 bit key), however this implementation is

more efficient (900 LE’s Altera Nomenclature).

A software implementation for many cryptographic

algorithms can be found on www.cryptopp.com,

there are also benchmarks for two kinds of Pentium

processors, and one AMD processor. The best result

for 1024-bit RSA is 0.07 milliseconds for one

encryption (public exponent 17), which is 25.000

operations per second. It is important to note that

MMX/SSE2 specific assembly language routines

are used for integer arithmetic. The result is

achieved on an AMD Opteron processor that is

running at 2.4 GHz.

In addition to the above algorithms the classical

“grammar school” products of the computational

complexity O(ln2(n)) can be enhanced – using FFT

techniques the complexity can be reduced to O(n ln

n ln ln n) [Crandall and Pomerance 2005]

IMPLEMENTATION DETAILS

In the following the details of the

implementation flow are outlined, this flow is

based upon the MatLab development flow used

at the Danish Technological Institute (DTI).

The Algorithm

Before we can use the Montgomery algorithm in

MatLab, we need to elaborate on the algorithm.

First a small dataflow graph (DFG) describing

the calculations using the Montgomery algorithm

are depicted in Figure 1:

Figure 1 the Montgomery algorithm.

Using the algorithm depicted in figure 1 the

following should be noted (With the prerequisite

that all operations are performed base 2, binary

representation, inputs use d bits):

• The ’M’ operation is a modulo-

operation, and as long as r has the form r

= 2
d
, then performing an operation

modulo r means that only the lower d

digits will be used in the operation

following the modulo operation.

Copyright © 2008 Danish Technological Institute Page 5 of 8

• With the above argument, the division by a

number r = 2
d
, means to shift down d bits.

• The variables t and m2 can be represented

by 2 · d bits and y1 can be represented with

at most d + 1 bits.

It is important to be aware of the changes of

representation when implementing in Simulink, and

also the implementation of the stimuli generators in

MatLab.

MatLab sub-development cycle

The MatLab development cycle is considered

necessary to be able to compare the results with the

later Simulink sub-development cycle; In MatLab

the algorithm is simple to implement, and can

therefore be used to verify the correctness of the

following Simulink sub-development cycle.

Furthermore some additional functions are

necessary to be able to generate the test vectors; the

most important is a multibit Greatest Common

Divisor Algorithm (gcdwide) which can operate on

signed integer operands of any size. Also a function

to generate stimuli for the Simulink simulator was

developed in MatLab. Finally a utility for dumping

the results using 16-bit words, were implemented to

aid the debugging in the following development

cycles. The above algorithms demand the capability

to handle very large numbers, which MatLab does

not support natively, but the Fixed-Point Toolbox

does - and the Simulink Fixed-point tool box does

partly. For details about the MatLab Fixed Point

Toolbox please refer to [MathWorks FPT 2008]. It

is important to mention in this context that the

FixedPoint Toolbox has two objects numerictype

and fimath. The numerictype object handles the

type size and fimath determines the mathematical

operations.

The following numerictype object is used (for 1024

bit operands):

 DataTypeMode: Fixed-point:

 Binary point scaling

 Signed: true

 WordLength: 1026

FractionLength: 0

Note that the numbers used here are signed, the

reason for this is that the gcdwide algorithm

returns the result g = ax+by which implies that

one of the operands a and b must be negative if g

= 1.

In the above figure it can be seen that there are 2

more bits in the wordlength, the reason for

having 2 extra bits, one for the sign and one for

the leading digit in the ‘r’ operand of the

Montgomery algorithm.

The fimath object matches the numerictype

with respect to word sizes; additionally we use

the following modes:

 RoundMode: fix

OverflowMode: wrap

Using these fixed point toolbox objects emulates

the behaviour of the usual d-digit

implementation on most computers and

especially the behaviour of the ’SIGNED’ and

’UNSIGNED’ data types used in the standard

IEEE VHDL packages (numeric standard).

3.3 Simulink sub-development cycle

In this section the most important achievement

of the Simulink sub-development cycle is

presented. This is the Multiplication block

depicted in Figure 2.

Copyright © 2008 Danish Technological Institute Page 6 of 8

ser2par

wr_en

datain

shift

dataout

dataout_m

Unit Delay 4

z

1

Unit Delay 3

z

1

Terminator

Switch

Matrix Multiply

Logical

Operator

OR

Constant 2

-C-
0:0

shift

6

not _domult

5

shiftin _wren

4

multiplicator

3

multiplicand

2

restart

1

shiftin_wrenshiftin_wrenshiftin_wrenshiftin_wrenshiftin_wrenshiftin_wrenshiftin_wrenshiftin_wren

shiftin _wren

multiplicandmultiplicandmultiplicandmultiplicandmultiplicandmultiplicandmultiplicandmultiplicandmultiplicand

dataoutdataoutdataoutdataoutdataoutdataoutdataoutdataoutdataout

multiplicatormultiplicatormultiplicatormultiplicatormultiplicatormultiplicatormultiplicatormultiplicator

multiplicator

restart

restartrestartrestartrestartrestartrestartrestartrestartrestart

qual_ipqual_ipqual_ipqual_ipqual_ipqual_ipqual_ipqual_ip

qual_ip

Figure 2: The Engine of the Montgomery

Multiplication (product part).

During the Simulink sub-development cycle the

model of the exponentiation was developed and

further refined. The most important task was to

make sure that the following code generation step

did not generate any product, with operand widths

greater than 18 bits. This is due to the fact that this

would prevent the implementation to take advantage

of any hardened IP’s in the hardware such as Xilinx

DSP48’s or Altera’s DSP’s. The DSP48 can

perform fast multiplications of 18 bit operands, this

is not sufficient for cryptographic purposes such as

1024 bit multiplication. Therefore it is advantageous

to split the operations up into 16-bit operations

resulting in 32-bit results. In order to perform 1024-

bit multiplications 64 DSP48’s are cascaded into

one 16x1024 bit multiplication, resulting in 64 32-

bit numbers.

Each 32-bit number is split into two 16-bit numbers,

so that the most significant 16-bit word is added to

the least significant computer word of the preceding

computer word. The result is a 16+1024 bit word

containing the result of the first 16x1024 bit

multiplication; this is depicted in Figure 3.

Figure 3: The principle of the multiplication,

step 1 (16*64 bit).

This is done 64 times, and for each of the 64

iterations the result is shifted downwards 16 bit,

as depicted in Figure 4.

Figure 4: The principle of the multiplication,

step 2 (16*64 bit).

This accumulation step is performed by the

Simulink model depicted in Figure 5.

Vector

Concatenate 40:0

Unit Delay 2

z

1

1

Switch2

Selector 1

U Y

Selector

U Y

Extract Bits5

Extract 16 Bits

Lower End

Extract Bits3

Extract 2 Bits

Upper End

Constant 4

-C-
0:0

Constant 10
0:0

productproductproductproductproductproductproductproductproduct

Figure 5: The Engine of the Montgomery

Multiplication (Accumulator part)

The result is a 1024-bit by 1024-bit

multiplication, calculating a 16-bit fraction of the

result per cycle starting with the least significant

word. A complete 2048 bit result can be

calculated within 128 cycles. If the result of the

Copyright © 2008 Danish Technological Institute Page 7 of 8

multiplication is to be done modulo 1024, then the

result is ready within 64 cycles.

The most interesting block of the engine is the

matrix multiply block (Figure 1), which is

responsible for multiplying a 16 bit number with a

vector containing 64 16-bit numbers. Due to this

partitioning of a 1024 bit number into 16*64-bit, a

set (64) of small multiplications are generated in the

VHDL code instead of one single multiplication.

These small multiplications make the synthesis of

the code simple, and portable between any FPGA

technology, having 16 bit multipliers built-in.

Simulink Code Generation

The Simulink code generation is straight forward

and is performed as described in the Simulink HDL

coder user manual [MathWorks shdl 2008], albeit

with some changes; First of all there is no (direct)

RAM support in Simulink, the user must either

write a new RAM or use the samples from

hdldemolib. In this case the latter approach was

taken. A few of the standard options were altered;

such as using “rising edge”, however they

have little effect on the code generation.

The result is a set of VHDL files, which matches the

expected results very well. In the second run a

testbench was generated, to validate the result. The

testbench verified for each clock cycle that the

Device Under Test (DUT) matched the expected

output, so an error could be detected at the exact

time when would occurs. The only obstacle using

this testbench is that result masking is not possible;

this is useful when using the testbench with

synthesised or placed and routed netlist.

RESULTS

Implementation

The implementation results are listed in table 1, the

numbers are calculated using 17 as encryption

exponent, and a 1024 bit number as modulo, except

for the ARSA-core which uses another (probably

larger key): therefore this figure has been

increased with a factor 200 to match the other

results. Note the low power consumption

compared with the speed of the core; not only

are our results superior compared with the results

from the software implementation when it comes

to power consumption, and even in a pure speed

comparison our core has the best performance.

The results in Table 1 were obtained targeting a

Xilinx Virtex 4SX-25 device speedgrade-12,

using ISE 10.1.

Type Usage Speed

(Kops)

Power

TI-RSA 7505

LUTs

33000 1W

TI-RSA

(floorplan)

7505

LUTs

52000 ~1W

ARSA 7000

Les

12/

(2400)

N.A.

Crypto++ 1 GPP 25000 90W

Table 1: Comparison of the TI-RSA

implementation with other implementations.

4.2 Verification

To verify the implementation a sample tuple

(message, key, cipher) was used; this tuple was

the same as used in [Jensen T.D et. al., 2006] .

The result from the simulation was compared

with the result from the MatLab calculations and

no difference was found. The same simulation

was also exported to VHDL using the testbench

generator; the generated testbench is a self

checking testbench resulting in either a

“PASSED” or “FAILED” output from the

console of the simulator - the result was

“PASSED”.

A comparison between the Simulink Model, the

ISE simulation and the (HIL) Hardware in the

Loop test is depicted in figure 7. The results are

identical which was also verified by comparing

the output (using the “ToWorkspace” block)

with the cipher text from the test-tuple.

Copyright © 2008 Danish Technological Institute Page 8 of 8

Figure 6: Output from 3 simulations of the RSA

core

CONCLUSION

The major achievement of this project was the

ability to generate a RSA core using Simulink,

without writing a single line of VHDL.

This also lowers the implementation time and

requirements for the staff: VHDL programmers are

usually high-skilled developers, both costly and

rare. Lowering the requirements for VHDL

specialists makes FPGA development simpler and

less costly for small and medium sized companies,

and furthermore moves the effort needed from

implementation to application. One skill which can

not be ignored is the required knowledge of the

transformation from a model into VHDL code

which effectively uses the hardened IP blocks either

by instantiation or inference is important, but when

comparing this the required knowledge of the

semantics of VHDL when doing it by hand our

preference is clear: It is definitely more interesting

to develop applications using a higher level

approach than implementing low-level (or lower-

level) VHDL. One of the main objectives when

doing model based development is the lack of

manual transformations from one level of

abstraction to another, therefore it is interesting to

note that from the beginning of this demonstration

case, the goal was to aid the implementation using

Simulink, but the final result was that all code

generated was done by Simulink.

Still robust craftsmanship is requested when you

want to break the limits: Using tools as PlanAhead

and manual pipelining the maximum performance

using a Virtex-4 SX-25C-12 increased the

maximum Clock Frequency from 150 MHz to

204 MHz, both breaking the original goal of

125MHz.

REFERENCES

[Bosselaers 1993] Anton Bosselaers, Rebe

Govaerts, and Joos Vandewalle. (1993)

Comparison of three modular reduction

functions. Advances in Cryptology CRYPTO

’93.

[Crandall and Pomerance 2005] Crandall, R.,

Pomerance C., Springer 2005. Prime Numbers,

Second Edition.

[Fry and Langhammer 2005] John Fry and

Martin Langhammer. (2005) RSA & public key

cryptography in FPGA’s.

[Jensen T.D et. al., 2006] Torben Ditlev Jensen,

Niels Ladegaard Beck, Christer Vindberg, Belma

Boyraz, and Carsten Siggaard. (2000) RSA

cipher optimizations in software and hardware.

The MathWorks, Inc [MathWorks FPT 2008].

(2008) Fixed-Point Toolbox(TM) 2 - User’s

Guide, version 2.2.

[MathWorks shdl 2008] The MathWorks, Inc

(2008) .Simulink HDL Coder(TM) 1 - User’s

Guide, version 1.3

[Menezes et. al., 1997] Alfred J. Menezes, Paul

C. van Oorschot, and Scott A. Vanstone. (1997)

Handbook of Applied Cryptography. Discrete

Mathematics and Its Applications. CRC Press.

[Montgomery P. 1985] Peter L. Montgomery.

(1985) Modular multiplications without trial

division. Mathematics of Computation Vol. 44,

Not 170, pages 519–521, Apr 1985.

[Singh 2000] Simon Singh (2000). The Code

Book, Fourth Estate Limited.

[Stinson 2006] Douglas R. Stinson D. R.,

Chapman & Hall/CRC (2006), Cryptography,

Theory and Practice.

