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Abstract 
In cryptographic applications multiplications modulo a large number is the core of algorithms such as 

RSA and El-Gamal. These operations are expensive, making even a Pentium IV unable to perform more 

than a few thousands cryptographic operations per second. Many algorithmic optimizations have been 

proposed e.g. by Montgomery and Barrett however the operations are still very expensive. The expensive 

operations cause the need for large server farms just to be able to handle the key exchange in large web 

applications. ASIC implementations exists which are very efficient, but ASIC’s suffer from the lack of 

flexibility, which is the hallmark of many FPGA’s. We present a method to map the multiplications into a 

Xilinx FPGA, creating a huge speedup. The advantage is that it is possible to upgrade the FPGA e.g. if 

key sizes have to be increased or the algorithm must be improved. The modelling is done by means of 

MatLab and Simulink, where the code generation is done by the Simulink HDLcoder. 
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INTRODUCTION 
 

 

Objectives 

 

In many data communication applications 

asymmetric cryptographic systems are in use. One 

of the most known is the RSA algorithm. Although 

it is very simple to describe, the RSA system is very 

demanding with respect to computational resources. 

The amount of traffic on the web sites requiring 

authentication and key exchange causes heavy load 

on the ISP’s computer resources. The purpose of 

this demo-project done at the Danish Technological 

Institute was to demonstrate that a high speed RSA 

off-load engine is simple and fast to implement 

using FPGA’s. 

 

Some of the arguments for using FPGA’s are 

outlined below, and they do cause a speed-up for 

many applications, especially Digital Signal 

Processing applications and Cryptographic 

applications: 

 

• FPGA’s are well suited for 

implementing cryptographic algorithms. 

There are several approaches taking 

advantage of the blocks of the FPGA’s - 

the most important are the DSP blocks 

which are implemented in both Xilinx 

and Altera FPGA’s, but also the RAM 

blocks which have a size that matches 

the intermediate results and the keys. 

 

• FPGA’s have the reputation that they 

operate fast. If you compare the clock 

frequencies of FPGA’s with processors, 

the FPGA seem to be slow, but where 

common off-the shelf processors can do 

a few operations per clock cycle FPGA’s 

can do several thousand operations per 

clock cycle - e.g. the soon to come 
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Altera Stratix-4 II EP4SE680 can do 1360 

18x18 bit signed multiplications per clock 

cycle. 

 

• FPGA’s are highly configurable - a SRAM 

based FPGA can be reprogrammed an 

unlimited number of times, making it 

possible to change the operation during the 

life time of the hardware used. 

 

One of the disadvantages is that developing 

applications for FPGA’s is a time consuming and 

cumbersome task; the programmer must have a 

thorough understanding of the programming 

language (VHDL or Verilog) and also of the 

underlying hardware. Therefore moving to a higher 

level of abstraction and using a tool supporting this 

higher level of abstraction significantly moves the 

effort from detailed implementation to algorithm 

refinement and verification. 

 

The entry barriers such as the required knowledge 

of the hardware are reduced, because the developers 

do not need to implement one single line of VHDL. 

The result of this is that FPGA development is 

turned into model-based development instead of 

pure VHDL implementation. 

 

RSA Cryptosystem 

 

Until 1997, the history of RSA was that Ron Rivest, 

Adi Shamir and Leonard Adlemann first described 

the RSA algorithm in 1977, and MIT was granted a 

US patent in 1983. The patent expired in September 

2000. However in 1997 Clifford Cocks work by the 

UK intelligence agency GCHQ was made public. 

 

Clifford Cocks work dates back to 1973 and 

essentially describes the RSA Cryptosystem. The 

algorithm did not come into use at that time [Singh 

2000]. 

 

The following definition is based on [Stinson 2006]. 

 

Definition 1: RSA Cryptosystem  

 
Let n = pq, where p and q are primes. 

 

Let P = C = Zn and define 

K = {n, p, q, a, b} : ab ≡ 1 mod Φ (n) 

where Φ(n) = (p − 1)(q − 1), because p and q are 

both primes. For K = (n, p, q, a, b), define: 

 

eK(x) = x
b
 mod n and  dK(y) = y

a
 (mod n) 

(x, y ∈ Zn).  

The values n and b comprise the public key, and 

the values p, q and a forms the private key.  

 

Note that RSA is not a secure system, but the 

level of security is defined by the use (or the 

misuse) of RSA. The RSA is one of the most 

famous cryptosystems and because RSA is a 

very resource-demanding cryptosystem, RSA is 

used as a sample application for calculations 

modulo some large n, however there are other 

cryptographic applications in which 

multiplications modulo some large n can be 

used, e.g. Diffie-Hellman, El-Gamal, not to 

mention elliptic curve algorithms [Stinson 2006]. 

 

The problem with these cryptosystems is that the 

calculation of a product modulo n (and therefore 

also exponentiation) is time-consuming. Either 

division or a series of subtractions must be used, 

but most algorithms for division can only 

calculate one (or two) bit(s) per cycle, hence a 

complete multiplication of a*b mod n, when n is 

a 1024-bit modulo might at least take 32+1024 

cycles, where the 32 cycles are used to calculate 

the product and the 1024 cycles are for the trial 

division. It is assumed that 2 bits can be 

calculated per cycle. 

 

So if there is a way to calculate a number 

modulo n which is faster than the computation 

time mentioned above, cryptography using RSA 

becomes faster. This also becomes important as 

the required key sizes increase due to the 

development in both the computational power 

and the skills of the cryptanalysts. 

 

A scheme proposed by Peter Montgomery 

[Montgomery P. 1985] has been accepted as one 
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of the best algorithms to calculate integers modulo a 

large number; the algorithm will be described in the 

next section. 

 

Montgomery Multiplication 

 

The Montgomery Multiplication is based upon the 

fact that for {x, y < m, m odd integer | ∃z < m} such 

that: 

 

z 2n
 (mod m) = x y (mod m)  (1) 

 

Because m is odd, equation 1 can be written as: 

 

2
−n

z 2
n 
= 2

−n
 xy (mod m) 

 

Which can be rearrange such that 

 

z = xy 2
−n

 (mod m) = xy r
−1

 (mod m), r = 2
n  

(2) 
 

The latter part of formula (2) is the Montgomery 

product. An algorithm calculating the Montgomery 

product is outlined in algorithm 1, the proof for the 

correctness of this algorithm can be found in 

[Montgomery P. 1985]  and [Jensen T.D,  2006] . 

 

 

The Montgomery product does not seem to be 

usable by itself, but if you instead of calculating 

MontProd(a, b) calculate:MontProd(a·r, b·r) then the 

result would be: 

 

MontProd(a·r, b·r)  = a·r ·b·r·r
−1

 mod n 

  = a·b·r mod n 

 

This property of the Montgomery product can be 

used when calculating several multiplications in 

series as described in Montgomery’s Paper 

[Montgomery P. 1985]. 

 

One example is exponentiation using a square 

and multiply approach as described in [Jensen 

T.D. et.al., 2006] and [Menezes et. al., 1997] . 

This approach forms the basis of the 

implementation described in this paper. 

 

 

The correctness of the square and multiply can 

be seen by a sample using 5 as the exponent: 

 

step                      Results (all modulo n) 

initial   x  = x·r
2
·r

−1
 = x·r 

initial(second) A = 1·r 
2
· r−1 = r 

1 A = (A·A·r
−1

) ·(˜x) ·r−1 

     = r· r·r
−1

· x· r· r−1  

  = x·r 

2 A = (A·A) · r
−1

  

  = (x · r) · (x · r) · r
−1

  

  = x
2
r 

3 A = (A·A·r
−1

)·(˜x) ·r
−1

  

  = x
2
r· x

2
r·r

−1
·x·r·r

−1
  

  = x
5
r 

final A = x
5
·r·r

−1
 = x

5
 

 

Note that the second product calculated in the 

initial step is only necessary each time a new 

modulo is generated, for systems with a fixed 
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modulo this step can be omitted, or if the system has 

storage for the modulo e.g. in local RAM. 

 

RELATED WORK 
 

 

Other implementations 

 

Two major algorithms for reduction modulo n are 

the Barrett algorithm and the Montgomery 

algorithm. The reason for choosing Montgomery 

instead of Barrett (or a classical trial division) is that 

Montgomery reduction scales very well for 

increasing operand sizes. This means that the 

computational complexity increases much more 

slowly for the Montgomery reduction than for both 

the classical and the Barrett Reduction. Furthermore 

exponentiation using the Montgomery product have 

been verified to be superior to both classical and 

Barrett [Bosselears 1993]. 

 

Other implementations using FPGA’s have been 

proposed, for example [Fry and Langhammer 2005], 

this implementation does not take advantage of the 

built-in multipliers on most modern FPGA’s, 

resulting in a low speed (12 operations per second 

for a 1024 bit key), however this implementation is 

more efficient (900 LE’s Altera Nomenclature ). 

 

A software implementation for many cryptographic 

algorithms can be found on www.cryptopp.com, 

there are also benchmarks for two kinds of Pentium 

processors, and one AMD processor. The best result 

for 1024-bit RSA is 0.07 milliseconds for one 

encryption (public exponent 17), which is 25.000 

operations per second. It is important to note that 

MMX/SSE2 specific assembly language routines 

are used for integer arithmetic. The result is 

achieved on an AMD Opteron processor that is 

running at 2.4 GHz. 

 

In addition to the above algorithms the classical 

“grammar school” products of the computational 

complexity O(ln2(n)) can be enhanced – using FFT 

techniques the complexity can be reduced to O(n ln 

n ln ln n) [Crandall and Pomerance 2005] 

IMPLEMENTATION DETAILS 
 

 

In the following the details of the 

implementation flow are outlined, this flow is 

based upon the MatLab development flow used 

at the Danish Technological Institute (DTI). 

 

The Algorithm 
 

Before we can use the Montgomery algorithm in 

MatLab, we need to elaborate on the algorithm. 

First a small dataflow graph (DFG) describing 

the calculations using the Montgomery algorithm 

are depicted in Figure 1: 

 

 
 

Figure 1 the Montgomery algorithm. 

 

Using the algorithm depicted in figure 1 the 

following should be noted (With the prerequisite 

that all operations are performed base 2, binary 

representation, inputs use d bits): 

 

• The ’M’ operation is a modulo-

operation, and as long as r has the form r 

= 2
d
, then performing an operation 

modulo r means that only the lower d 

digits will be used in the operation 

following the modulo operation. 
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• With the above argument, the division by a 

number r = 2
d
, means to shift down d bits. 

• The variables t and m2 can be represented 

by 2 · d bits and y1 can be represented with 

at most d + 1 bits. 

 

It is important to be aware of the changes of 

representation when implementing in Simulink, and 

also the implementation of the stimuli generators in 

MatLab. 

 

MatLab sub-development cycle 

 

The MatLab development cycle is considered 

necessary to be able to compare the results with the 

later Simulink sub-development cycle; In MatLab 

the algorithm is simple to implement, and can 

therefore be used to verify the correctness of the 

following Simulink sub-development cycle. 

Furthermore some additional functions are 

necessary to be able to generate the test vectors; the 

most important is a multibit Greatest Common 

Divisor Algorithm (gcdwide) which can operate on 

signed integer operands of any size. Also a function 

to generate stimuli for the Simulink simulator was 

developed in MatLab. Finally a utility for dumping 

the results using 16-bit words, were implemented to 

aid the debugging in the following development 

cycles. The above algorithms demand the capability 

to handle very large numbers, which MatLab does 

not support natively, but the Fixed-Point Toolbox 

does - and the Simulink Fixed-point tool box does 

partly. For details about the MatLab Fixed Point 

Toolbox please refer to [MathWorks FPT 2008]. It 

is important to mention in this context that the 

FixedPoint Toolbox has two objects numerictype 

and fimath. The numerictype object handles the 

type size and fimath determines the mathematical 

operations. 

The following numerictype object is used (for 1024 

bit operands): 

 
  DataTypeMode: Fixed-point:  

            Binary point scaling 

        Signed: true 

    WordLength: 1026 

FractionLength: 0 

 

Note that the numbers used here are signed, the 

reason for this is that the gcdwide algorithm 

returns the result g = ax+by which implies that 

one of the operands a and b must be negative if g 

= 1. 

In the above figure it can be seen that there are 2 

more bits in the wordlength, the reason for 

having 2 extra bits, one for the sign and one for 

the leading digit in the ‘r’ operand of the 

Montgomery algorithm. 

The fimath object matches the numerictype 

with respect to word sizes; additionally we use 

the following modes: 

 
   RoundMode: fix 

OverflowMode: wrap 

 

Using these fixed point toolbox objects emulates 

the behaviour of the usual d-digit 

implementation on most computers and 

especially the behaviour of the ’SIGNED’ and 

’UNSIGNED’ data types used in the standard 

IEEE VHDL packages (numeric standard). 

 

3.3 Simulink sub-development cycle 

 

In this section the most important achievement 

of the Simulink sub-development cycle is 

presented. This is the Multiplication block 

depicted in Figure 2.  
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Figure 2: The Engine of the Montgomery 

Multiplication (product part). 

 

During the Simulink sub-development cycle the 

model of the exponentiation was developed and 

further refined. The most important task was to 

make sure that the following code generation step 

did not generate any product, with operand widths 

greater than 18 bits. This is due to the fact that this 

would prevent the implementation to take advantage 

of any hardened IP’s in the hardware such as Xilinx 

DSP48’s or Altera’s DSP’s. The DSP48 can 

perform fast multiplications of 18 bit operands, this 

is not sufficient for cryptographic purposes such as 

1024 bit multiplication. Therefore it is advantageous 

to split the operations up into 16-bit operations 

resulting in 32-bit results. In order to perform 1024-

bit multiplications 64 DSP48’s are cascaded into 

one 16x1024 bit multiplication, resulting in 64 32-

bit numbers. 

Each 32-bit number is split into two 16-bit numbers, 

so that the most significant 16-bit word is added to 

the least significant computer word of the preceding 

computer word. The result is a 16+1024 bit word 

containing the result of the first 16x1024 bit 

multiplication; this is depicted in Figure 3. 

 

 
 

Figure 3: The principle of the multiplication, 

step 1 (16*64 bit). 

 

This is done 64 times, and for each of the 64 

iterations the result is shifted downwards 16 bit, 

as depicted in Figure 4. 

 

 
 

Figure 4: The principle of the multiplication, 

step 2 (16*64 bit). 
 

This accumulation step is performed by the 

Simulink model depicted in Figure 5. 
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Figure 5: The Engine of the Montgomery 

Multiplication (Accumulator part) 

 

The result is a 1024-bit by 1024-bit 

multiplication, calculating a 16-bit fraction of the 

result per cycle starting with the least significant 

word. A complete 2048 bit result can be 

calculated within 128 cycles. If the result of the 
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multiplication is to be done modulo 1024, then the 

result is ready within 64 cycles. 

 

The most interesting block of the engine is the 

matrix multiply block (Figure 1), which is 

responsible for multiplying a 16 bit number with a 

vector containing 64 16-bit numbers. Due to this 

partitioning of a 1024 bit number into 16*64-bit, a 

set (64) of small multiplications are generated in the 

VHDL code instead of one single multiplication. 

These small multiplications make the synthesis of 

the code simple, and portable between any FPGA 

technology, having 16 bit multipliers built-in. 

 

Simulink Code Generation 

 

The Simulink code generation is straight forward 

and is performed as described in the Simulink HDL 

coder user manual [MathWorks shdl 2008], albeit 

with some changes; First of all there is no (direct) 

RAM support in Simulink, the user must either 

write a new RAM or use the samples from 

hdldemolib. In this case the latter approach was 

taken. A few of the standard options were altered; 

such as using “rising edge”, however they 

have little effect on the code generation. 

 

The result is a set of VHDL files, which matches the 

expected results very well. In the second run a 

testbench was generated, to validate the result. The 

testbench verified for each clock cycle that the 

Device Under Test (DUT) matched the expected 

output, so an error could be detected at the exact 

time when would occurs. The only obstacle using 

this testbench is that result masking is not possible; 

this is useful when using the testbench with 

synthesised or placed and routed netlist. 

 

RESULTS 
 

 

Implementation 

 

The implementation results are listed in table 1, the 

numbers are calculated using 17 as encryption 

exponent, and a 1024 bit number as modulo, except 

for  the ARSA-core which uses another (probably 

larger key): therefore this figure has been 

increased with a factor 200 to match the other 

results. Note the low power consumption 

compared with the speed of the core; not only 

are our results superior compared with the results 

from the software implementation when it comes 

to power consumption, and even in a pure speed 

comparison our core has the best performance. 

 

The results in Table 1 were obtained targeting a 

Xilinx Virtex 4SX-25 device speedgrade-12, 

using ISE 10.1. 

 

Type Usage Speed 

(Kops) 

Power 

TI-RSA 7505 

LUTs 

33000 1W 

TI-RSA 

(floorplan) 

7505 

LUTs 

52000 ~1W 

ARSA 7000 

Les 

12/ 

(2400) 

N.A. 

Crypto++ 1 GPP 25000 90W 

 

Table 1: Comparison of the TI-RSA 

implementation with other implementations. 
 

4.2 Verification 

 

To verify the implementation a sample tuple 

(message, key, cipher) was used; this tuple was 

the same as used in [Jensen T.D et. al., 2006] . 

The result from the simulation was compared 

with the result from the MatLab calculations and 

no difference was found. The same simulation 

was also exported to VHDL using the testbench 

generator; the generated testbench is a self 

checking testbench resulting in either a 

“PASSED” or “FAILED” output from the 

console of the simulator - the result was 

“PASSED”. 

 

A comparison between the Simulink Model, the 

ISE simulation and the (HIL) Hardware in the 

Loop test is depicted in figure 7. The results are 

identical which was also verified by comparing 

the output (using the “ToWorkspace” block) 

with the cipher text from the test-tuple. 
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Figure 6: Output from 3 simulations of the RSA 

core 

 

CONCLUSION 
 

 

The major achievement of this project was the 

ability to generate a RSA core using Simulink, 

without writing a single line of VHDL. 

 

This also lowers the implementation time and 

requirements for the staff: VHDL programmers are 

usually high-skilled developers, both costly and 

rare. Lowering the requirements for VHDL 

specialists makes FPGA development simpler and 

less costly for small and medium sized companies, 

and furthermore moves the effort needed from 

implementation to application. One skill which can 

not be ignored is the required knowledge of the 

transformation from a model into VHDL code 

which effectively uses the hardened IP blocks either 

by instantiation or inference is important, but when 

comparing this the required knowledge of the 

semantics of VHDL when doing it by hand our 

preference is clear: It is definitely more interesting 

to develop applications using a higher level 

approach than implementing low-level (or lower-

level) VHDL. One of the main objectives when 

doing model based development is the lack of 

manual transformations from one level of 

abstraction to another, therefore it is interesting to 

note that from the beginning of this demonstration 

case, the goal was to aid the implementation using 

Simulink, but the final result was that all code 

generated was done by Simulink. 

Still robust craftsmanship is requested when you 

want to break the limits: Using tools as PlanAhead 

and manual pipelining the maximum performance 

using a Virtex-4 SX-25C-12 increased the 

maximum Clock Frequency from 150 MHz to 

204 MHz, both breaking the original goal of 

125MHz. 
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