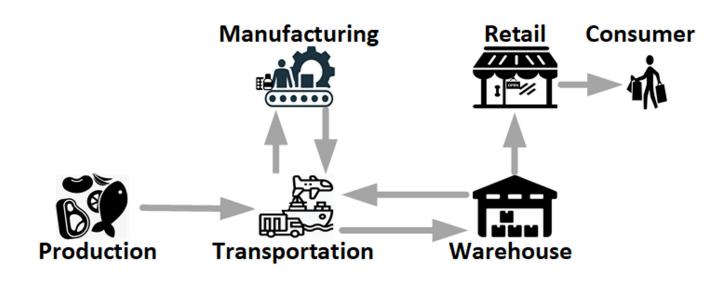


Automatic Fault Detection and Diagnosis in Refrigeration Systems -A Data-driven Approach-

- BITZER Electronics A/S ,collaboration with Aalborg university
- July, 04 2024

Refrigeration systems in cold chain



Refrigeration systems affect on:

- Medicine and food
- Human health
- Economy
- Global warming

Bitzer, Green manufacturer

UPTIME

Important factors:

- Accuracy
- False positive rate
- Computation time
- Required amount of data and sample time
- Required variables (features)
- Ability to lower cost of human resources
- Robustness of the tool for distributed systems

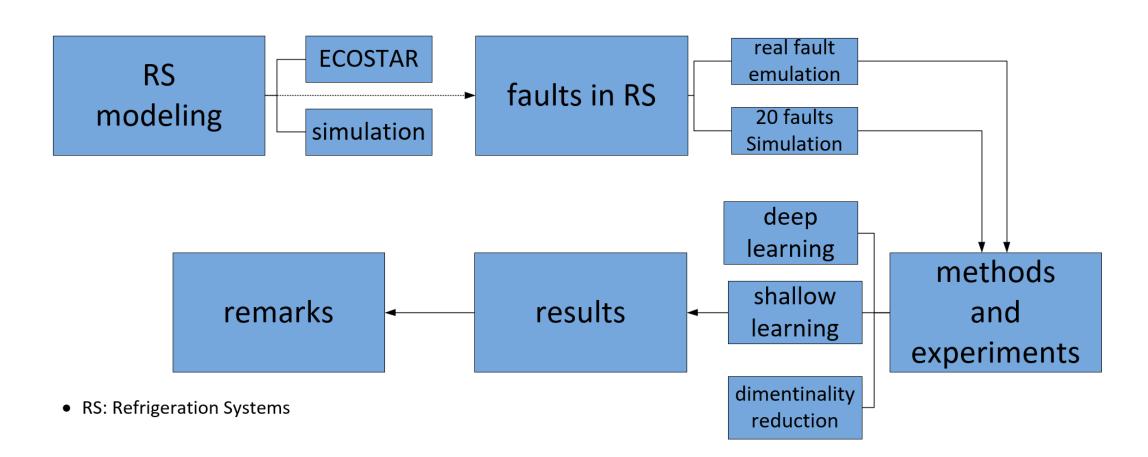
HVAC & R controllers

user panels and smart phone app

modules

and more products

Discussion points:



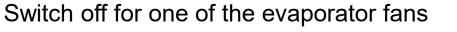
ECOSTAR Unit

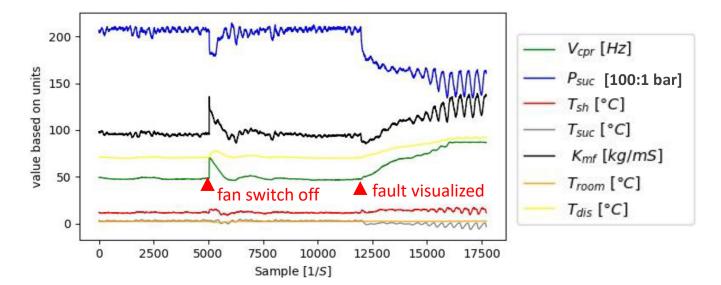
Ecostar is a condensing unit for supermarket refrigeration systems

Evaporator fan fault

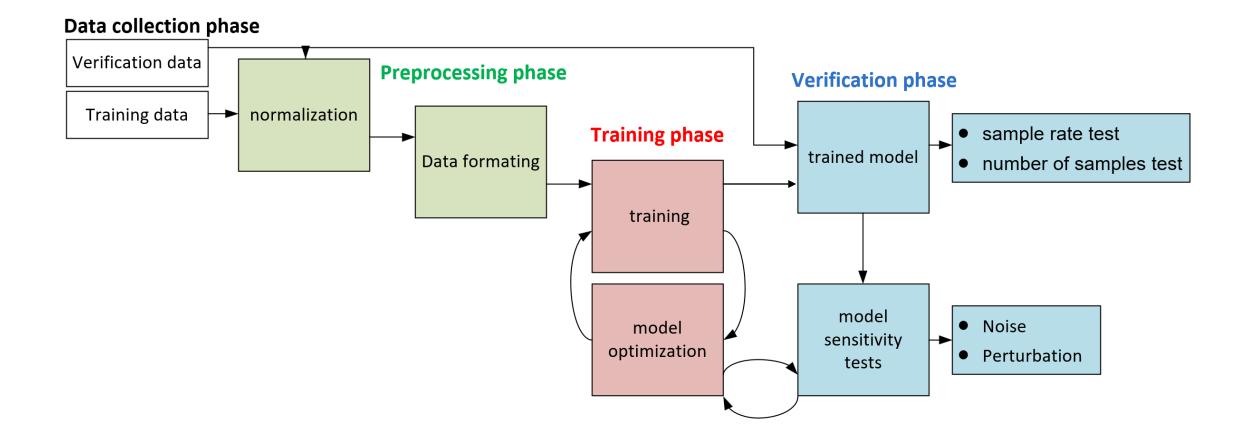
Ice accumulation on evaporator when one of the fan was off defrost mode : off

An example of datalog for fan fault detection. The fault happened in sample 5000 and it is obviously affected the data later.





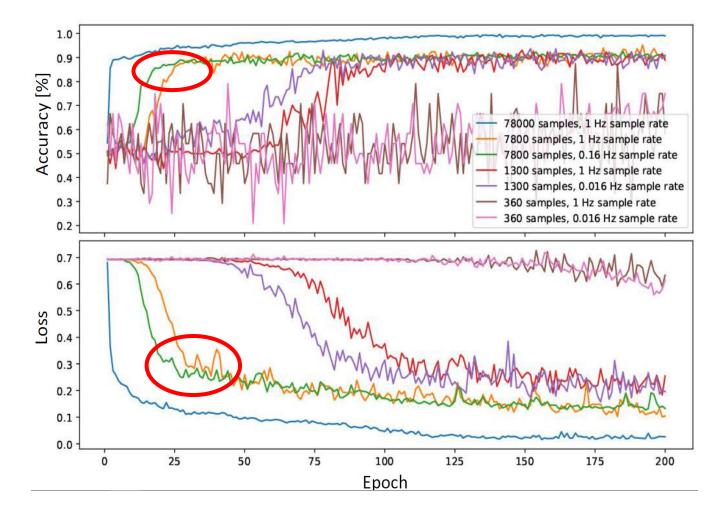
CNN for Fan fault detection Overview:



Lower resolution, faster convergence

 \checkmark faster convergence

✓ same accuracy until 0.016 Hz

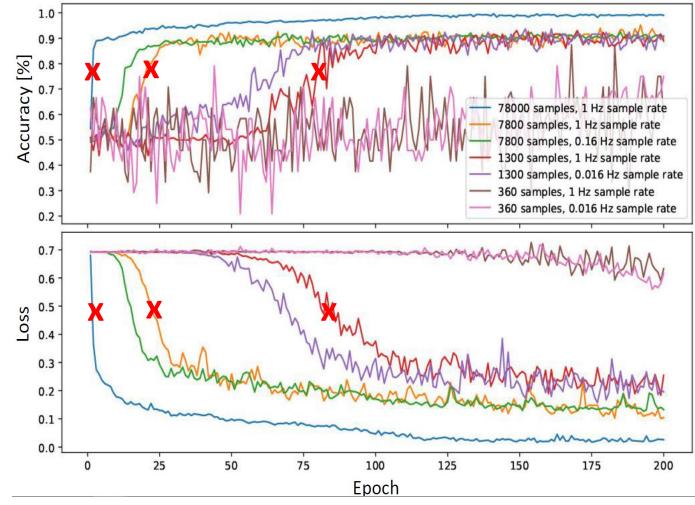


Evaluation of CNN training using data with different resolutions

Less number of samples, slower convergence

Less number of samples:

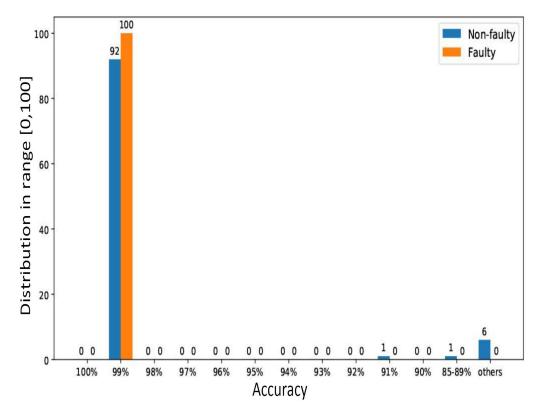
- ✓ lower accuracy
- ✓ Slower convergence



1. Evaluation of CNN training using data with different resolutions

Effect of perturbation & noise - CNN

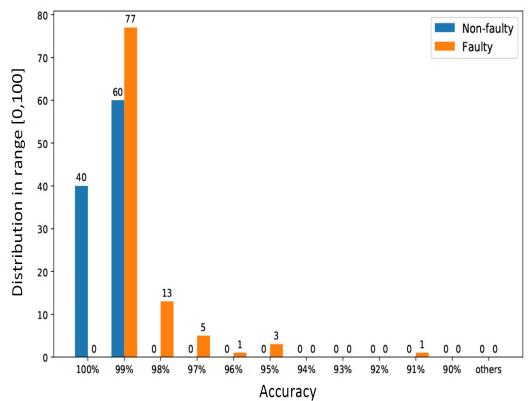
- Perturbation test:
- 1% false positive rate, reliable for 92% of the time
- 99% classification accuracy for detecting faulty condition



Bizer AALBORG UNIVERSITET

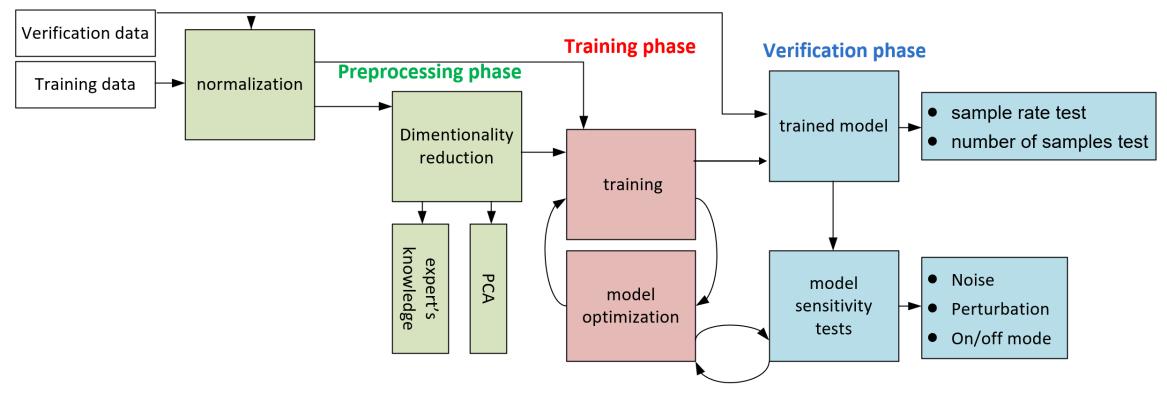
Noise test:

- < 1% false positive for all runs
- >95% fault classification accuracy for 99 runs out of 100



SVM for binary clssification: Overveiw

Data collection phase



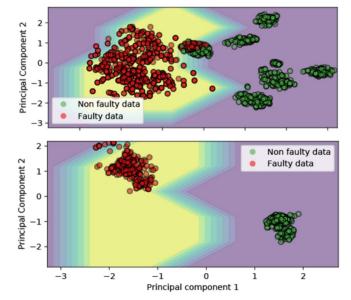
SVM sensitivity against data resolution and size

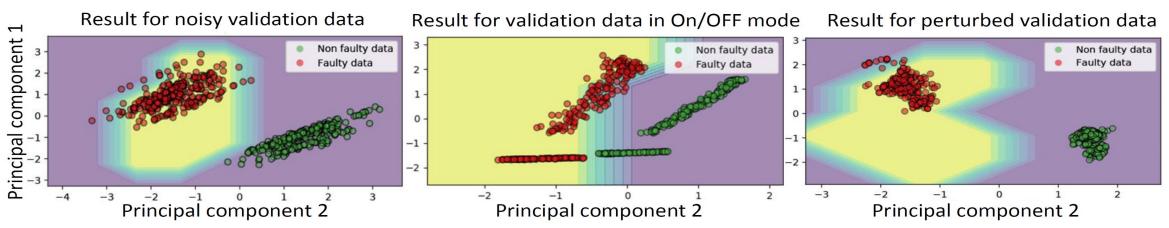
- Importance of data length selection for SVM training
- Result of the SVM training is independent to the sample rate, if data represents thermodynamical behavior of the systems

length	sample rate $[Hz]$	training time (s)	accuracy [%]
	1	0.07	94
300	0.1	0.08	94
	0.01	0.07	94
	1	0.09	99
900	0.1	0.09	99
	0.01	0.1	99
	1	0.57	93
1800	0.1	0.65	93
	0.01	0.63	93

PCA-SVM sensitivity tests

Training and test result for PCA-SVM





PCA-SVM better than the others

- 4D SVM and 2D PCA-SVM obtained very similar results
- PCA-SVM performs better in fault detection in On/Off experiment
- PCA-SVM is more robust and efficient as it automatically select the dimensions

	Algorithm	Non faulty [%]	Faulty[%]
y	14D SVM	98.5 -99.6	98 -99.4
Noisy	4D SVM	98 -100	98 - 99.4
Ž	PCA-SVM	98 -100	98 -99.6
Perturbed	14D SVM 4D SVM PCA-SVM	89-100 99.2-100 100	97-100 99-100 100
On/Off	14D SVM 4D SVM PCA-SVM	50-60 55-60 -[85-86	53-60.5 54-61 - 95.5-96.4

PCA-SVM obtained the best result for the experiments above

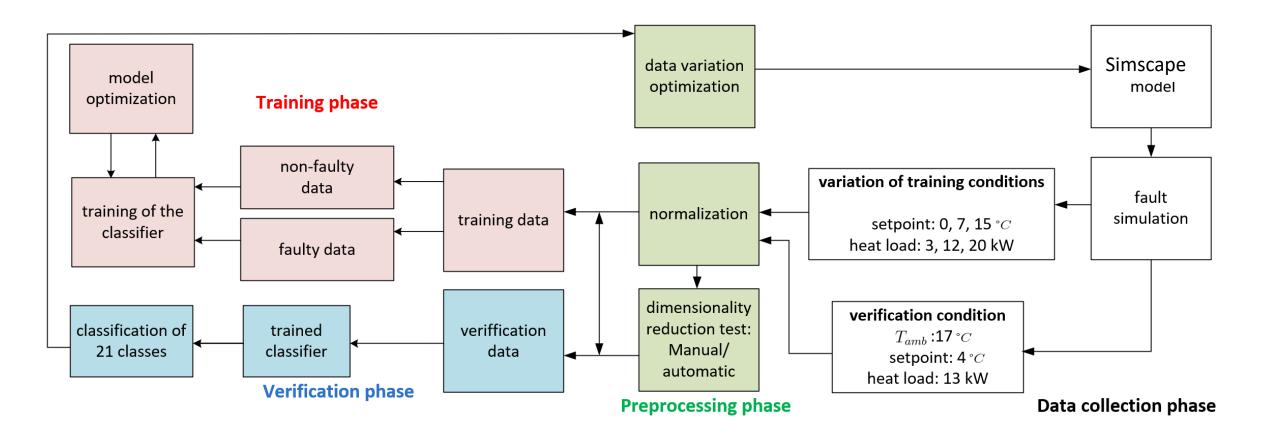
Bizer AALBORG UNIVERSITET

Faults description

- Temperature offset 2
- Psuc offset 0.2 bar ^{0C}
- Pdis offset 1 bar

Label	Fault
1	T_{suc} sensors positive offset
2	T_{sup} sensors positive offset
3	T_{ret} sensors positive offset
4	T_{dis} sensors positive offset
5	P_{dis} sensor positive offset
6	P_{suc} sensor positive offset
7	Compressor poor performance
8	Losse expansion valve
9	Evaporator fan poor performance
10	Condenser fan poor performance
11	T_{suc} sensors negative offset
12	T_{sup} sensors negative offset
13	T_{ret} sensors negative offset
14	T_{dis} sensors negative offset
15	P_{dis} sensor negative offset
16	P_{suc} sensor negative offset
17	Broken compressor
18	Blocked expansion valve
19	Broken evaporator fan
20	Blocked condenser fan

Multi-class classification Overview

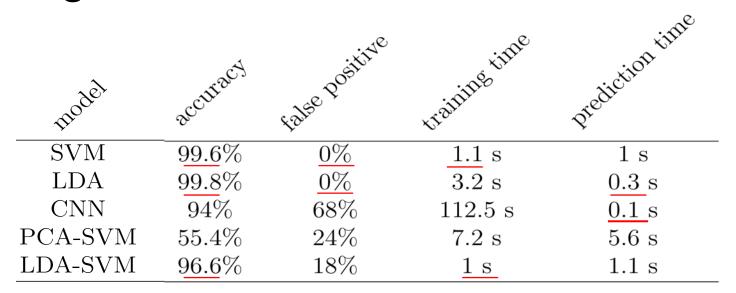


CNN for multi-class classification

non-faulty **CNN** classification 1.0 0 0 0 0 0 0.07 0 0.42-1 0 0 0 0 0 0 0 0.8 Δ Ω Ω 0 0 8 0.07 9 0 10 0 11 0 11 0 12 0 0.6 0.07 œ 0 0 0 0 0.4 0 0 • 0 0 0 0 0 0 0 0 0 0 0 Ω 0 0 0.2 0 0 0 0 0 0 0.28 0 0 0.02 0 0 69.0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0.0 7 18 19 20 -1 1 2 3 4 9 10 Predicted label

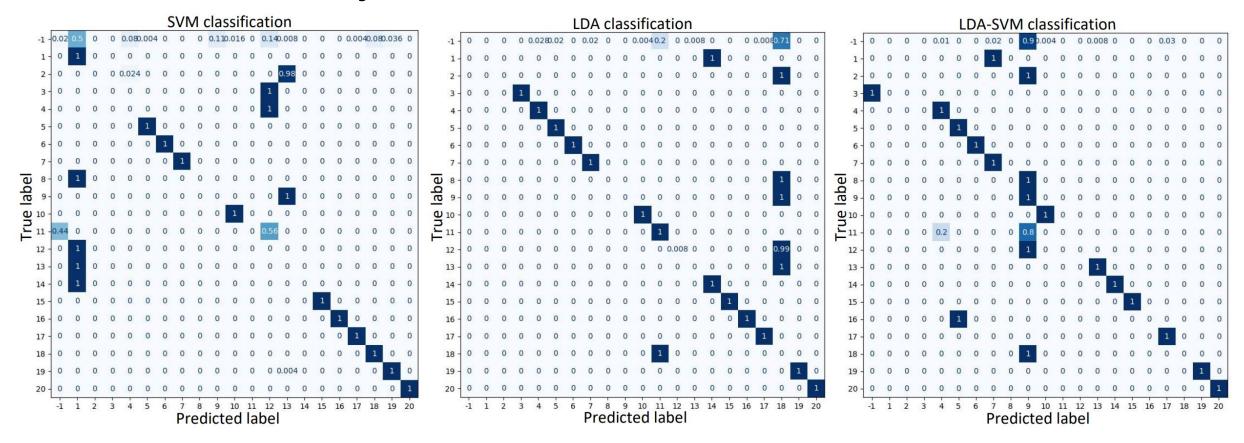
- Can classify most of the classes
- Total accuracy: 94%
- 58% false positive

Models comparison: training/test results



- LDA, SVM, LDA-SVM obtained the most accuracy, respectivly
- False positive in LDA and SVM are perfect (training/test phase)
- Prediction time of LDA is comperatively lower than the others
- Training time is too slow in CNN and false positive is too high
- Total accuracy for PCA-SVM is too low

No satisfatory results

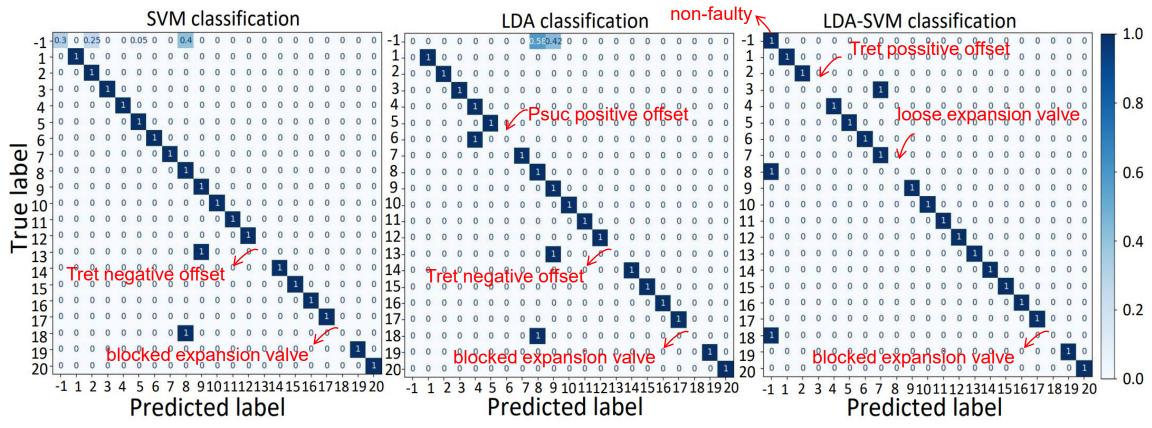


Verification data in different operation conditions than training

- Non-faulty data is **not** identified
- Faulty data are **not** classified satisfactorily

models with more data variation

Adding variation of ambient temperature and setpoint to the data features



• density, and power consumption of the compressor are removed.

LDA-SVM for fault detection

model	accuracy	false positive	prediction time
SVM	87%	70%	$0.4 \mathrm{~s}$
LDA	81%	100%	$0.3 \mathrm{s}$
LDA-SVM	86%	0%	$1.5 \mathrm{s}$

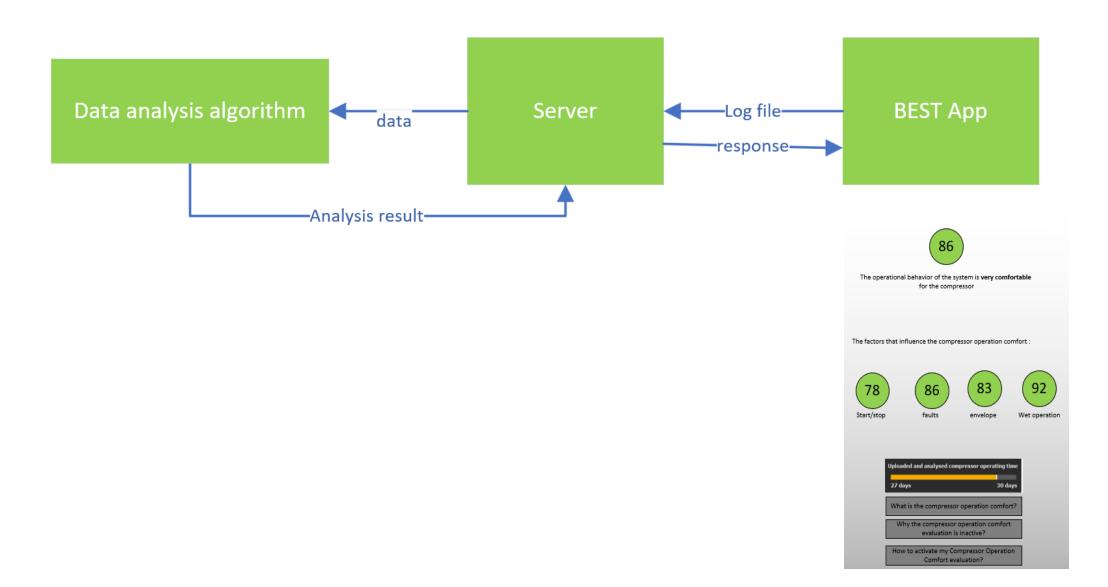
Reseach remarks

- PCA Vs LDA (binary classification or multi-class classification)?
- Data resolution is not important when using SVM until it preserve dynamic of the systems
- Careful selection of data size when using SVM.
- Best model selection: a trade-off among a high accuracy, low computation, and low false positive

LDA-SVM, a reliable model for fault detection with a 0% false positive SVM, the most accurate model for fault diagnosis LDA quick at prediction

• Careful selection of input data

Smart solution for performance monitoring



Zahra Soltani zahra.soltani@bitzerdk.com Bitzer Electronics Sønderborg