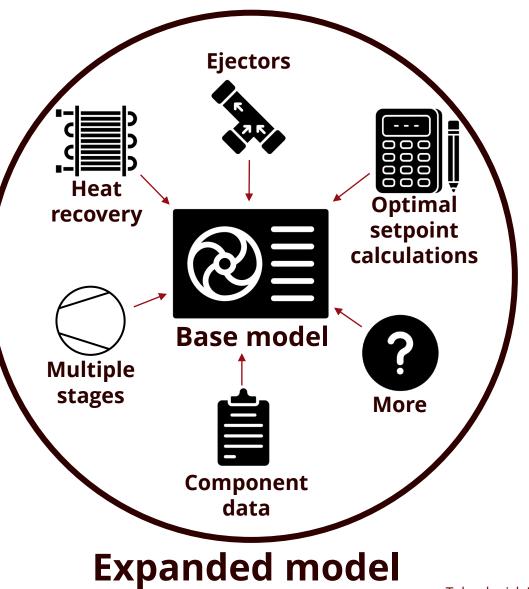
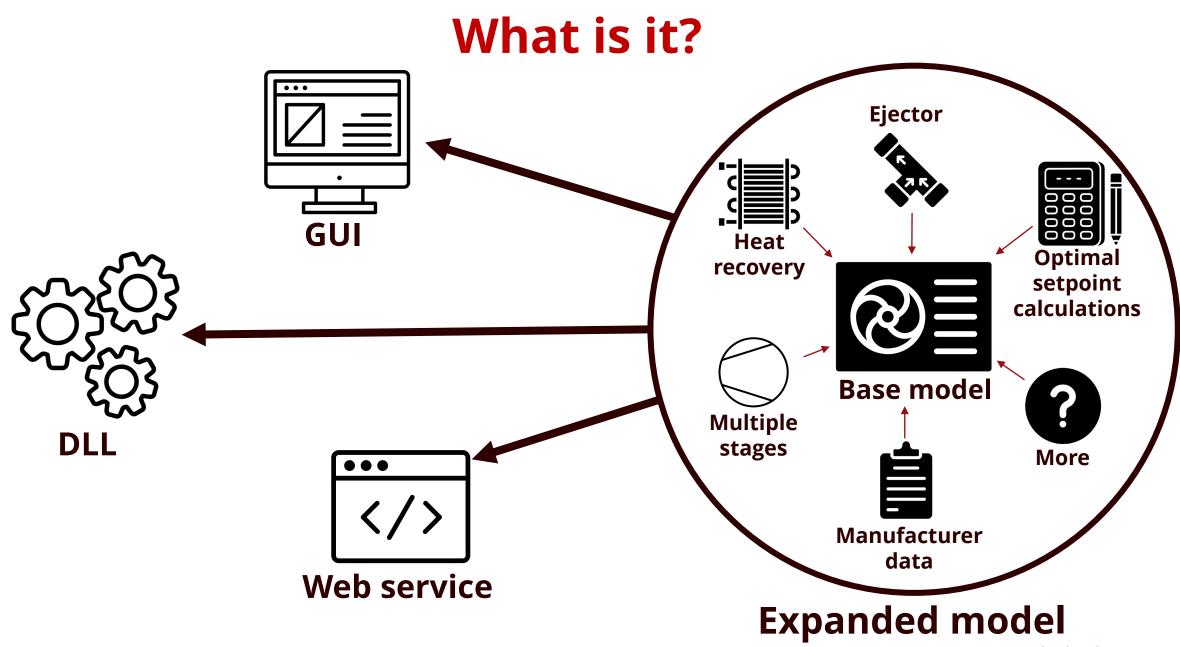


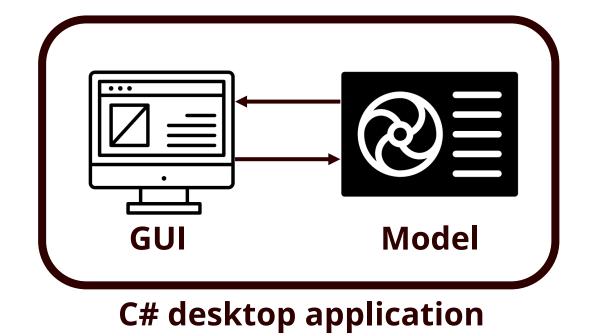
Flexible steady state HP model


What is it?

- At the base level is a simple heat pump model
 - Built for CO2 systems, but can be modified to model other refrigerants
 - Steady state
 - Subcritical and transcritical operation
- Written in C#
- Object oriented
 - Based on individual independent components that can be 'dragged and dropped' together



What is it?


- Model can be expanded with advanced features
- Examples
 - Heat recovery
 - Internal heat exchangers
 - HP/LP ejectors
 - Multiple suction stages
 - Integrate external calculation software from component manufacturers (compressors, heat exchangers, ejectors)
 - Calculation of optimal gascooler and receiver pressure setpoints

Teknologisk Institut

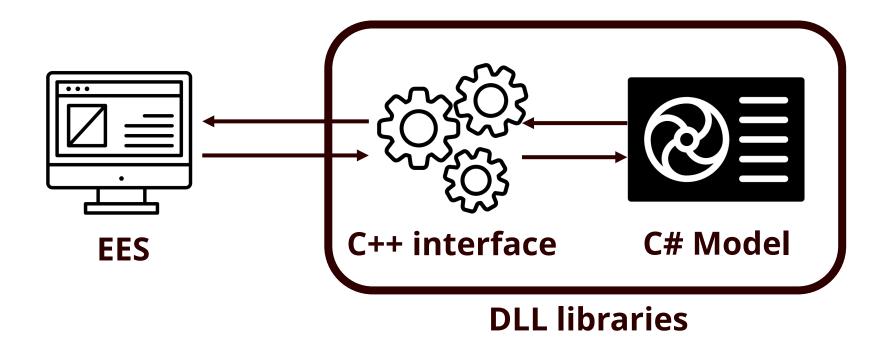
Teknologisk Institut

- Can be tailored to exactly what is needed
- Includes
 - Report generation
 - Integration with an external system
 - Seasonal calculation
 - Safety valve(s) selection
- Could be extended into a true selection tool

Design Details		PI-diagram LogP-H diagram Warrings YearCalc Safety Valves Heat Recovery Diagram
CALCULATE (F2) Job name CALCULATE (F2) Job name Orient name Client name ATT Suction Groups Project ID T Suction Groups I Project ID T Suction Groups I Project ID Saccoler outlet temp. I Continual Continue for the pressure IIII Continue for the pressure IIII Continue for the pressure IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CO2 outlet subcooler 30.0 °C Subcooler capacity 0 kW AXP112 Gty. 5.0 °C AXP112 Gty. 34.0 °C AXP112 Gty. 34.0 °C Cooling capacity 0 kW COP 0.00 [d] Water dP 31.2 kPa CO2 dP 0.00 [d] Brand: Btzer Qe Nominal FLA BSTE-140K - 69.4m3/h 124.0 kW 212.0 A (c) (3)and. BSTE-140K - 69.4m3/h 124.0 kW 21375.8 kW Suction volume	f subled by P loading 0 % Margin nit. 9.8 % 9.8 % 9.8 % 5.05 kg/s 9.8 % 5.05 kg/s 19.2 kPa

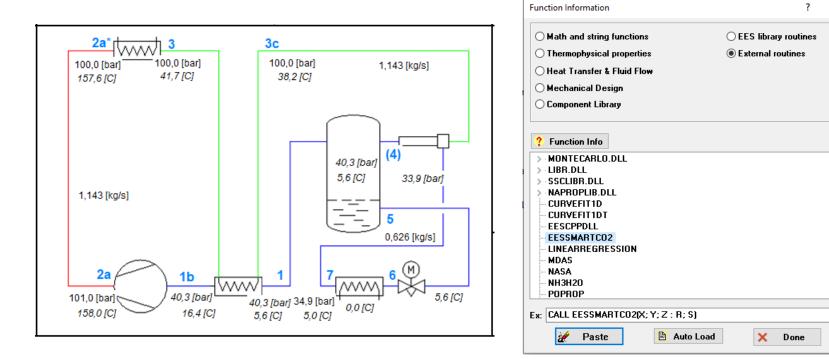
- Can be tailored to exactly what is needed
- Includes
 - Report generation
 - Integration with an external system
 - Seasonal calculation
 - Safety valve(s) selection
- Could be extended into a true selection tool

ALCULATE (F2) Job name Client name AT Suction Groups 1 Rack Size 7+2x0 T Suction Groups 1 Project ID	Country Sales engineer File name	150	
Suction Groups ↓ 1 dP suction ↓ 0.5 bara igh Pressure Side saccoler outlet temp. 37.2 °C saccoler pressure 105.6 bara Optimal Optimal Optimal Optimal Optimal Cool Pheat cool Cool Cool Cool Cool Cool Cool Cool	MT capacity Cooling Capacity 1375,8 kW Power consumption 795,6 kW COPcool 1,73 [-] COPheat 2,70 [-] Voltage 400V \sigma\$ 50Hz \sigma\$ Current draw 1355,2 A FLA 1908,0 A OSubcooling GC return Us, dump (Common line > M C02 outlet subcooler 30,0 °C Subcooler capacity 0 kW AC heateschanger (HPV outlet) 0 % Cooling capacity 0 kW ACP 112 Cay. Water flow Subcool P 0,00 [-]	(if suplied by	
TT1 IT Fixed Cooling Capacity Evaporating temperature \$\overline{16.0 'C} 1\overline{150 \overline{16.0 C}}	Brand: Btzer Qe Nominal FLA 8FTE-140K - 69,4m3/h • 124,0 kW 212,0 A 8FTE-140K - 69,4m3/h • 124,0 kW 212,0 A 1375,8 kW 581,8 kW Suction volume 485,8 m²/h 581,8 kW 91,8 A 1,73 [-] 1,73 [-]	essor Filter: Standard Transcritical PMmotor CRII Ssandard Subortical ME-Series ocked (P	

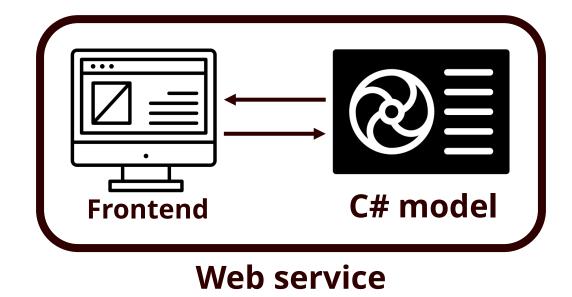

- Can be tailored to exactly what is needed
- Includes
 - Report generation
 - Integration with an external system
 - Seasonal calculation
 - Safety valve(s) selection
- Could be extended into a true selection tool

		- 0
File Options		
Plant Design Details		PI-diagram LogP-H diagram Warnings YearCalc Safety Valves
CALCULATE (F2) Job name Olient name MT Suction Groups ● 1 Rack Size 4+1x(2+2) LT Suction Groups ● 2 Project ID TS Suction Groups ● 1 Project ID Cooling Caj Gascooler outlet temp. 9000 CC Gascooler pressure 70.0 bara 9000 CC Gascooler Pressure 70.0 bara 9000 CC Gascooler HR / SC / AC / Lq. Dump Gascooler HR / SC / AC / Lq. Dump Gascoty rate 100 % Capacity 0 kW Fuid outlet \$ 70.0 °C PinchPoint 0 Δ°C	nsumption 406,9 kW 2.45 [-] 0 [-] 400V √ [50Hz → / aw 702,9 A 1166,8 A / 1216,9 A bccooling GC retum idlet subcooler (⇒ 30.0 °C) idler capacity 0 kW heaterchanger (HPV outlet)	5.470 kg/s 5.470 kg/s 15.6 °C Gascooler 30.0 °C 30.0 °C 17.74 kg/s 1.724 kg/s 1.724 kg/s 1.724 kg/s 2.176 kg/s 1.724 kg/s 2.5 m/h 1/2 1.0 °C 1.0 °C 0.000 kg/s 1.0 °C 3.746 kg/s 2.5 m/h 1/2 0.000 kg/s 1.6 °C 3.746 kg/s 3.746 kg/s
(pct. of view 1 % COP discharge capacity COP MT1 LT1 LT2 IT Fixed Cooling Capacity Brand: E Evaporating temperature -10.0 °C 30°C 37TE-140 Superheat Evaporator 50 0 0 0 °C 30°C 50 0 0 8FTE-140 00°C 0°C 8FTE-140 0°C 0°C<td>capacity ↓ 100.0 kW Image: Compression Filter: Bitzer ✓ Qe Nominal FLA Compressor Filter: OK - 69.4m3/h ✓ 179.0 kW 212.0 A ✓ (e)PMmotor</td><td>P = 287.9 KW 0.754 kg/s 0.80 kg/s 0.30 kg/s 0.30 kg/s 0.30 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.32 kg/s 0.33 kg/s 0.33 kg/s 0.33 kg/s 0.33 kg/s 0.33 kg/s 0.30 kg</td>	capacity ↓ 100.0 kW Image: Compression Filter: Bitzer ✓ Qe Nominal FLA Compressor Filter: OK - 69.4m3/h ✓ 179.0 kW 212.0 A ✓ (e)PMmotor	P = 287.9 KW 0.754 kg/s 0.80 kg/s 0.30 kg/s 0.30 kg/s 0.30 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.31 kg/s 0.32 kg/s 0.33 kg/s 0.33 kg/s 0.33 kg/s 0.33 kg/s 0.33 kg/s 0.30 kg
Enter credentials Upload config. PDF, and rack settings		

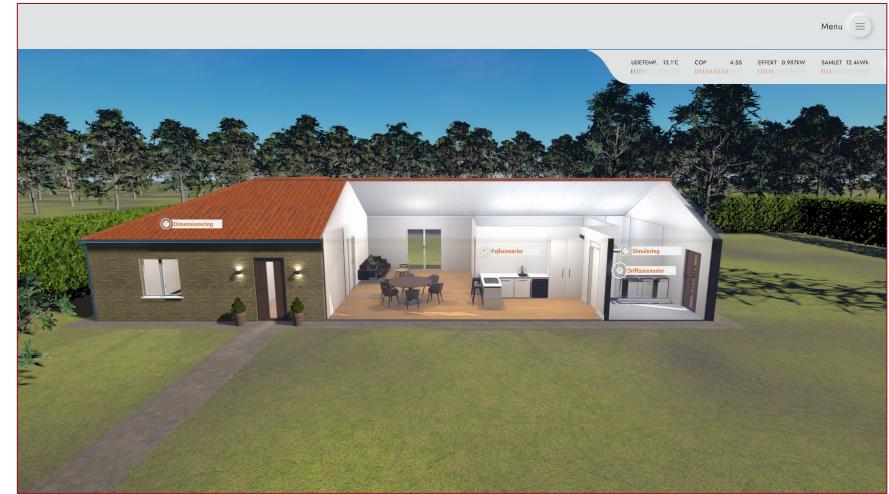
- Can be tailored to exactly what is needed
- Includes
 - Report generation
 - Integration with an external system
 - Seasonal calculation
 - Safety valve(s) selection
- Could be extended into a true selection tool


	- 🗆 ×
le Options Iant Design Details	Di disaran II and Hidinaran Jularainan I Yang ala I Cafat Valuan J
CALCULATE (F2) Job name Country	PI-diagram LogP-H diagram Warnings YearCalc Safety Valves
Client name Sales engineer	
MT Suction Groups A+1x(2+2) File name	
LT Suction Groups 2 Project ID MT capacity LT capacity	100
IT Suction Groups	
High Pressure Side 2009 L	
Gascooler outlet temp. 🔄 30.0 °C COPcool 2,45 [-]	
Gascooler pressure 77.0 bara Optimal COPheat 0 [·]	(paul
Receiver pressure 36,3 bara 🔽 Roating pressure Voltage 400V 🗸 50Hz 🧹	
Min. deta P 🜩 7.0 bara Max pressure 🛊 63.0 bara Current draw 702.9 A / 753.1 A	
Gascooler HR / SC / AC / Liq.Dump Ejector FLA 1166,8 A / 1216,9 A	
Heat Recovery in common discharge Subcooling GC return	
Capacity rate 🖨 100 % Capacity 0 kW CO2 outlet subcooler 🖨 30.0 °C Pct. load of 1 mm LLI Temp. MT1 suction HP liquid)	
Fluid inlet	
Fluid outlet	
Heatloss Cooling capacity 🖨 100,0 kW	
(pct. of v 1/2) discharge capacity COP 3.43 [-] Water dP 0 kPa CO2 dP 0 kPa	10 150 150 200 250 300 350 400 450 500 550 600 Enthalpy-[U]/kg]
MT1 LT2 IT Reved Cooling Capacity Brand: Bitzer Qe Nominal FLA Compressor Filter.	
(a)Standard Transcritical	
Superheat Evaporator ⇒ 5.0 Δ°C 3 ⊕ 50 ⊕ 8FTE-140K - 69.4m3/h • 179.0 kW 212.0 A (d)StandardSubcritical Cell 0.0 ±<	
Superheat Suction line 🔄 0.0 A C 🛛 🕞	
Suction to liquid heatexchanger	
MTo-Gascoolerliq V O Efficiency 90 % C to C a T12 C LVM C to to C to L 127 C - 16	
Coming Lapacity 713,6 KW Suction Volume 277,6 m/m	
Power consumption 207,5 KW	
Gasbypass to RecCoil 🗘 60 % Current draw 498.3 A	
COP 2.58 [·]	
Enter credentials Upload config. PDF, and rack settings	

Implementations – EES function

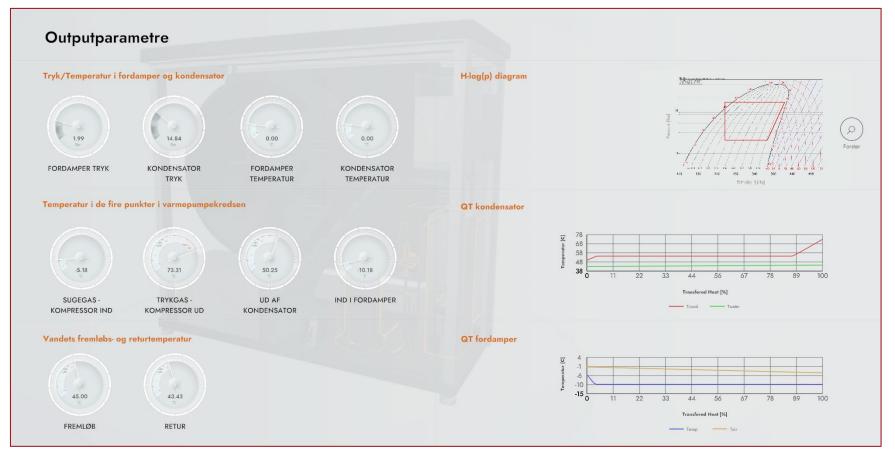

Implementations – EES function

- Callable via EES as an external routine
- Debugging of DLL via EES is possible
- With a similar setup, it is also possible to call the model from other code languages



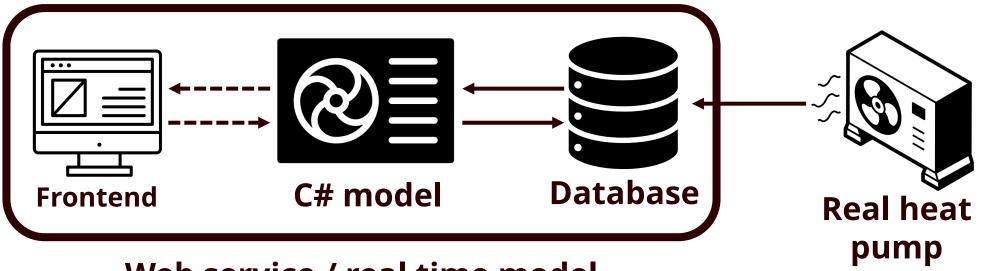
X

Implementations – Web service


- Accessed via a browser
- Intuitive graphical user interface suitable for nonexperts
- Backend consists of our model

- Accessed via a browser
- Intuitive graphical user interface suitable for nonexperts
- Backend consists of our model

				Menu
			Aktuel drift Energiforbrug Månedlig drift	
Inputparametre				
Varmepumpens nominelle kapacitetet ved 7/35°C		5 kW		
Varmepumpens nominelle vandflow) 3 m3/h		
Udeluftens temperatur		-1 °C		
Aktuelt varmebehov		7 kW		
Fremløbstemperatur		● 45 °C		
Vandflow i procent af Nominel		0 %		
Varmetab fra varmepumpens rør til udeluft i % af nominel kapacitet		2 %	UDFØR	
Varmetab fra varmepumpens rør til jord i % af nominel kapacitet		2 %		
Varmetab fra varmepumpens rør til huset i % af nominel kapacitet		2 %		
Beskidt fordamper	•	0 %		
Tilfrosset fordamper	•	0 %	e	
Kølemiddel mængde		100 %		


- Accessed via a browser
- Intuitive graphical user interface suitable for nonexperts
- Backend consists of our model

- Accessed via a browser
- Intuitive graphical user interface suitable for nonexperts
- Backend consists of our model

Implementations – Web service

Web service / real time model