Augmented Cellular Meat Production (ACMP) - AP 1 og AP 2
Vælg side
AP 1 - Quality inspection and contaminant detection of bellies
AP 2 - Belly trimming with handling assistance
Formål
Projektet har til formål at understøtte aktiviteterne i Innovationsfondsprojektet ACMP, som skal bidrage med løsninger inden for nye måder, hvorpå man kan anvende robotter i tæt samarbejde med mennesker, herunder anvendelse af virtual reality til simulering og programmering og lærende styresystemer, som kan optimere kvalitet.
Projektstatus 4. kvartal 2020
Det vigtigste nye output er, at metode, proces og forsøg for fælles demonstration af tilskæring og trimning af 1882 brystflæsk er gennemført hos ekstern virksomhed. Procesforløbet viste de nøglekomponenter, som skal optimeres, før konceptet kan afprøves af virksomhedens personale. Varierende lysindfald samt robust kalibrering af den benyttede projektor er de væsentligste faktorer, der skal forbedres. Ligeledes skal den benyttede farvelægning og lysstyrke tilpasses den konkrete arbejdsplads. Dataintegration mellem CT skanneren og DynaCQ fungerede fint, da begge systemer er målfaste, men udfordringerne viser sig ved ønsket om fleksibel arbejdsposition af hensyn til EGA belastningen (Ensidigt, Gentaget Arbejde), og kravet om målfast formidling af skæremønstre samt trimmepositioner og –dybder. Den demonstrerede procedure er dokumenteret på DMRI’s konference om fremtidens fødevareproduktion og kan ses nedenfor. De erkendte optimeringsbehov vil være fokusområder for aktiviteterne i det kommende år, herunder fastlæggelse af den optimale omsætning af lokal fedttykkelse (fedtfrakken) til en farveskala, som operatøren kan benytte som vejledning til hvor og hvor dybt, der skal trimmes. Den selvlærende algoritme havde oprindeligt været planlagt til at skulle udvikles ud fra billeder af brystflæsk, men erkendelsen i projektet er, at det er for vanskeligt at definere en korrekt kvalitet på et stykke brystflæsk, da det vurderes på mange parametre. Derfor er der valgt at benytte afskæring af fortå som eksempel på procesovervågning og automatisk bedømmelse af kvalitet. I modsætning til brystflæsk er fejlmulighederne færre og den optimale afklipning af tåen ret veldefineret. De første billeder er optaget, og der planlægges på denne baggrund en fornyet optagelse med tilhørende bedømmelse i 2021. |
Den næste store aktivitet i projektet er at fastlægge farveskalaen for fedtfrakken og gentage demonstrationen med erfarne operatører. Den anden kommende aktivitet er at optage billeder og træne en model til automatisk bedømmelse af kvalitet. |
Projektstatus 3. kvartal 2020
Det vigtigste nye output er, at metode, proces og forsøg for udvikling af selvlærende algoritme for proceskontrol er fastlagt. Målet er at udvikle et system eller en algoritme, der kan overvåge, at en robot eller et udstyr udfører en given proces korrekt og i den rigtige kvalitet. Systemet udvikles i første udgave på en proces, som er nem og entydig at vurdere om er udført korrekt. Processen er afklipning af fortå, som enten kan være udført korrekt, eller hvor fortåen er klippet for kort eller for langt. Fortåafklipningen er en del af processerne i WP3. I praksis tages der billeder af skankeknoglen, efter at fortåen er klippet af, og ud fra disse billeder kan det afgøres, hvor klippet er sket. Algoritmen trænes til at genkende de forskellige udfald af afklipningen, så hvis der f.eks. er en tendens til, at fortåen klippes for kort kan klippestedet automatisk korrigeres.
Den selvlærende algoritme havde oprindeligt været planlagt til at skulle udvikles ud fra billeder af brystflæsk, men erkendelsen i projektet er, at det er for vanskeligt at definere en korrekt kvalitet på et stykke brystflæsk, da det vurderes på mange parametre. Bedømmelsen af brystflæsk ville således tage for mange ressourcer i forhold til det primære, som er at udvikle en algoritme, der er generisk og dermed mulig at videreudvikle til at overvåge eller styre andre processer. |
Den næste store aktivitet i arbejdspakken er i første omgang at optage de data, der skal ligge til grund for udviklingen af den selvlærende algoritme samt manuelt vurdere kvaliteten af tåafklipningen og træne algoritmen på billederne med den tilhørende vurdering. Anden store aktivitet er at gennemføre en demonstration i robotcellen på bearbejdning af brystflæsk samt demonstrere samarbejde mellem en robot og en operatør. |
Projektstatus 2. kvartal 2020
Det vigtigste nye output er, at der er udført test i en robotopstilling, hvor samarbejde mellem en robot og mennesker er undersøgt. Testen efterligner en robot og et menneskes samarbejde om at bearbejde et stykke kød på forskellige måder. F.eks. om robot og menneske skiftes til at arbejde på kødstykket, eller de gør det samtidigt, samt om arbejdsområderne overlapper eller ikke. |
Den næste store aktivitet i projektet er, at arbejde videre med selvlærende algoritmer, som kan bruges til f.eks. kvalitetskontrol og procesfeedback, så en robot selv korrigerer og optimerer en proces ud fra data optaget efter hver bearbejdningsproces. Algoritmerne trænes ud fra en stor mængde billeddata af godkendte brystflæsk og hensigten er, at algoritmerne kan trænes til andre processer. |
Projektstatus 1. kvartal 2020
Opsamling af data for opstilling af korrekt produktkvalitet for brystflæsk af typen 1882 er i fuld gang. Der er optaget de første ca. 4000 billeder i et produktionsmiljø, og indsatsen med at designe et næsten autonomt optagesystem er en succes. Operatørerne på slagteriet kan selv håndtere optagesystemet uden, at det hindrer den normale produktionsrutine og kapacitet. De erhvervede data vil blive brugt til at træne et neuralt netværk, og den resulterende algoritme vil blive valideret på flere billeder af 1882 brystflæsk. Arbejdet med trimning og tilskæring af brystflæsk er gået videre til næste fase. Et mindre parti brystflæsk er CT scannet for at få de præcise detaljer om fedtlagets tykkelse. Den rumlige fordeling af fedttykkelsen under huden konverteres til en farveskala, der præsenteres på brystflæskets overflade vha. en projektor. Operatøren tilskærer og trimmer brystflæsket ud fra den information, som projektoren viser på brystflæskets overflade. Trimmekniven giver feedback mht. tykkelsen af fedtet, der skæres af, således at informationen på brystflæsket opdateres løbende, hvilket hjælper operatøren til at opnå et ensartet fedtlag på hele brystflæsket. |